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Abstract

Causal inference from time series data is a key problem
in many fields, and new massive datasets have made
it more critical than ever. Accuracy and speed are pri-
mary factors in choosing a causal inference method, as
they determine which hypotheses can be tested, how
much of the search space can be explored, and what
decisions can be made based on the results. In this
work we present a new causal inference framework that
1) improves the accuracy of inferences in time series
data, and 2) enables faster computation of causal signif-
icance. Instead of evaluating relationships individually,
using only features of the data, this approach exploits
the connections between each causal relationship’s rel-
ative levels of significance. We provide theoretical guar-
antees of correctness and speed (with an order of mag-
nitude improvement) and empirically demonstrate im-
proved FDR, FNR, and computation speed relative to
leading approaches.

Introduction

When testing causal relationships such as “eating chocolate
raises blood glucose”, we want to know not only that such
relationships exist, but when the changes will happen, how
large the effect is, and whether there are other factors that
interact with the causes. We are often inferring these rela-
tionships from massive datasets, such as gene expression mi-
croarrays (involving thousands of genes) and high frequency
financial market data (such as tick by tick data) and thus
need not only methods that can infer these relationships ac-
curately, but ones that can also do so efficiently.

We propose a new approach for causal inference with
continuous-valued effects. This improves on prior work
by exploiting the connections between each causal rela-
tionship’s relative levels of significance, and comes with
stronger theoretical guarantees while provably lowering the
time complexity by an order of magnitude over the state of
the art. Finally, we compare the approach to others on simu-
lated data, demonstrating this improved speed and accuracy.
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Related work
Current methods have mainly focused on separate aspects
of causal inference. A main approach is using Bayesian net-
works (BNs) (Pearl 2000; Spirtes, Glymour, and Scheines
2000). BNs and their adaptations can handle both discrete
and continuous data (Heckerman, Geiger, and Chickering
1995) as well as combinations of the two (Friedman, Geiger,
and Goldszmidt 1997), but cannot infer the timing of rela-
tionships, and exact structure learning is NP hard (Chicker-
ing, Geiger, and Heckerman 1994; Cooper 1990).

Dynamic Bayesian networks (DBNs) (Friedman, Murphy,
and Russell 1998; Murphy 2002) extend BNs to time se-
ries and similarly aim to find pairwise relationships between
variables (rather than more complex combinations). They
also only enable inference of relationships with discrete time
lags, and remain computationally complex to infer. As a re-
sult, heuristics must be used, but these can lead to overfitting
and require users to choose many parameters. In contrast,
our proposed approach allows efficient exact inference of
complex causal relationships with associated windows be-
tween cause and effect in time series data.

Granger (1980) causality aims to determine if one time se-
ries is predictive of another, after accounting for other avail-
able information (often testing this using vector autoregres-
sion). The bivariate form uses pairs of variables and is fast,
but often finds spurious relationships while the multivariate
form is more accurate but extremely computationally com-
plex and in practice not feasible for large datasets. Our ap-
proach in contrast is not a regression of one variable on val-
ues of others, but rather incorporates the causal significance
of one factor when evaluating that of another, and is much
less computationally intensive than multivariate Granger.

Recently, Etesami and Kiyavash (2014) used directed in-
formation graphs to find linear dynamical graphs, and Pe-
ters et al. (2013) used restricted structural equation models
to find causal structures from time series where an effect’s
value is a function of the value of its causes and independent
noise. However, the former cannot handle deterministic rela-
tionships, and the latter is more complex than our approach
(O(N2ft) versusO(N2T )), whereN is the number of vari-
ables, f and t the complexity of the user-specified regression
method and independence test, and T the length of the time
series. Unlike our approach, these methods cannot guarantee
the correctness of both relationships and effect size.



Background
An alternative causal inference framework, developed
in (Kleinberg 2011), is based on representing causal rela-
tionships as logical formulas, enabling inference of com-
plex relationships and their timing (Kleinberg 2012) without
prior knowledge. We briefly overview the approach, before
discussing several limitations.

A causal relationship here is represented by the following
PCTLc (probabilistic computation tree logic with numerical
constraints) “leads-to” formula, where c is a discrete vari-
able (e.g. diagnoses) and e a continuous-valued variable (e.g.
laboratory tests):

c;≥r,≤s≥p e 6= E[e]. (1)

Thus if c is true at timepoint t, then in time window [t+r, t+
s], the probability of e deviating from its expected value is
at least p. That is, c potentially leads to changes in e’s value.

Many factors may fit this definition without being causal,
so the major work of this method is separating those that are
significant from those that are insignificant or spurious.
Definition 1. Where c is a discrete variable and e a
continuous-valued one taking values in R, then c is a po-
tential cause of e if: E[e|c] 6= E[e] and c is earlier than e.

Note that there is a time window [r, s] between c and e, as
shown in eq. (1), where 1 ≤ r ≤ s ≤ ∞ and r 6= ∞. The
above expectations are defined relative to this window.
Definition 2. Where X is the set of potential causes of e,
the causal significance of c for e, εavg(c, e), is:

εavg(c, e) =
∑

x∈X\c

E[e|c ∧ x]− E[e|¬c ∧ x]
|X\c|

. (2)

This averages the impact of c on the value of e, holding
fixed each potential cause of e in turn. Intuitively, an effect
of a common cause will make little difference after the true
cause is held fixed, unless one common effect consistently
precedes the other. Potential causes whose εavg is greater
than a threshold are ε-significant causes, with the rest being
ε-insignificant. For significant causes to be genuine, the data
must be stationary and common causes of all pairs of vari-
ables must be included. The threshold for ε can be chosen
using methods for testing statistical significance while con-
trolling the false discovery rate. The complexity of calculat-
ing εavg with N variables and T timepoints is O(N3T ).

One challenge is when the factors held fixed are correlated
and few variables are measured (as this approach assumes
there will be many factors to hold fixed). Specifically, eq. (2)
uses the difference between E[e|c∧ x] and E[e|¬c∧ x], but
there may be causes of e that occur only with c∧x or ¬c∧x,
biasing this difference. This occurs in two main cases:

Common cause If y is an unmeasured common cause1 of
c, x and e, and c and x are always earlier than e, then both
may seem to cause e. When y is measured, this can still lead
to an overestimation of c and x’s impact on e if y occurs with
both c and xmore often than c or x alone. That is, E[e|c∧x]
would be increased compared toE[e|¬c∧x] andE[e|¬x∧c].

1Also known as a latent or hidden variable.

Common effect If c and y are causes of x and e, and x
often precedes e, then c, x and y could seem to cause e. If
y occurs with x alone more often than with both c and x (as
y causes x), then E[e|¬c ∧ x] may be increased relative to
E[e|c ∧ x]. This may underestimate the significance of c.

Method
We now propose 1) a new definition of and calcula-
tion for causal significance that solves the challenges
described, and 2) an approximation that can be used
when the exact method cannot. Accuracy and speed of
the approach are proven theoretically and later demon-
strated empirically. All the proofs are publicly available at:
http://www.cs.stevens.edu/∼skleinbe/publications.html.

Our primary contribution is a new measure for causal sig-
nificance, which aims to isolate the impact of cause c on
effect e. Ideally, we want to know what happens to e’s value
when only c is present and every other cause is absent. How-
ever, in practice many causes often co-occur, so the number
of such observations is unlikely to be statistically significant.

Instead, we propose that under some assumptions we can
treat the significance of a set of causes as a system of linear
equations where we then solve for the impact of each cause.
This lets us incorporate the significance of each cause and
handle cases such as deterministic relationships with few
measured variables that previously posed challenges.

Assumptions
We provide stronger guarantees than other approaches, in-
cluding not only correct inference of a relationship (e.g. c
causes e) and its timing (in 1 minute), but also the exact
impact (c raises e’s value by 6 units). To do this, we rely
primarily on the assumptions that:

1. Relationships are linear and additive. That is, the value of
a variable at any time is given by the sum of the impact of
its causes that are present plus a constant.

2. Causal relationships are deterministic and constant (i.e.
c’s impact on e is the same every time c occurs). The value
of a variable when no cause is present is also constant.

3. All genuine causes are measured.
However, we also demonstrate experimentally that when
some or most of the assumptions do not hold, we achieve
low false discovery and negative rates.

Causal significance
We now introduce a new definition of causal significance,
α(c, e), that measures the average contribution to e’s value
that comes solely from c. This is done by calculating the
average difference between the value of e when only c is
present and that when no cause is present.
Definition 3. The causal significance of c for e, α(c, e),
where X is the set of potential causes of e, and there are
relationships of the form c;≥r,≤s e and x;≥r

′,≤s′ e is:

α(c, e) =
|T (e|c)|
N(e|c)

× (E[e|c
∧

x∈X\c

¬x]− E[e|
∧
x∈X
¬x]).

(3)



The difference in expected value gives the difference in
e’s value due to c alone (when all other causes are ab-
sent) and that when all causes (including c) are absent. This
accounts for unmeasured and constant background condi-
tions. The difference is multiplied by |T (e|c)|, the number
of unique timepoints where e is measured in window [r, s]
after each instance of c, and divided by the total number of
such timepoints N(e|c), to yield the average difference. Po-
tential causes are as in definition 1.

Let T (v) be the set of timepoints where a continuous vari-
able is measured or a discrete one is true. Then:

T (e|c) =
⋃
ct

T (e|ct), (4)

where T (e|ct) = T (e) ∩ [t+ r, t+ s].

Similarly, N(e|c) is the total number of timepoints where e
could be caused by each instance of c, taking the sum of the
size of each set rather than the union. More formally:

N(e|c) =
∑
ct

|T (e|ct)|. (5)

Note that when multiple instances of a cause c occur such
that their windows overlap, then N(e|c) will count the times
in the overlap multiple times while |T (e|c)| is the number of
unique timepoints. For example, if c’s window is [1, 2], c is
true at times {1, 2} and e is measured at each, thenN(e|c) =
4 while |T (e|c)| = 3. If no windows overlap (say when c is
infrequent), N(e|c) reduces to |T (e|c)|.
Calculating conditional expectation In practice many
causes are correlated, and the negation of all causes aside
from c will rarely be observed, leading to a loss of statisti-
cal power when calculating this measure from frequencies.
Instead, α can be estimated as follows.

While we may not observe the negation of all other causes
of e often enough, this difference can be estimated by tak-
ing the conditional expectation of e given c and subtracting
the component of this caused by other causes of e. This is
weighted by the ratio of the number of timepoints in the
overlap of c and x’s windows, relative to the total number
of unique times where c can lead to e. By using this ratio,
we can account for cases with many deterministic causes of
a single effect. Based on assumptions 1 to 3, the conditional
expectation of e given c alone is now:

E[e|c
∧

x∈X\c

¬x] = E[e|c]−
∑

x∈X\c

N(e|c, x)
|T (e|c)|

× α(x, e),

(6)
where:

E[e|c] =

∑
t∈T (e|c)

et

|T (e|c)|
, (7)

N(e|c, x) =
∑

t∈T (x)

|T (e|xt) ∩ T (e|c)|.

Similarly, we estimate the expected value of e not due to any
potential cause as:

E[e|
∧
x∈X
¬x] = E[e]−

∑
x∈X

N(e|x)
|T (e)|

× α(x, e). (8)

Under assumptions 1 to 3, eqs. (6) and (8) yield these ex-
pectations exactly. Proof is given in sec. A (under corollary
A.1) of supplementary material.

Algorithm for efficiently calculating α(c, e)
By replacing the expectations with the right-hand side of
eqs. (6) and (8), eq. (3) can be written as:

α(c, e) = f(e|c)×(E[e|c]−E[e])−
∑

x∈X\c

f(e|c, x)×α(x, e),

(9)
where:

f(e|c) = |T (e)| × |T (e|c)|
N(e|c)× (|T (e)| − |T (e|c)|)

,

f(e|c, x) = N(e|c, x)× |T (e)| −N(e|x)× |T (e|c)|
N(e|c)× (|T (e)| − |T (e|c)|)

.

(10)

Note that keeping fixed the timepoints where c and x are
true, f(e|c) and f(e|c, x) are then a function of the time-
points where e is measured. When there are no missing data,
both are then the same for each e and can be calculated once.

Equation (9) for all c ∈ X yields the following system of
n linear equations and n unknowns:

A× Y = B, (11)

where:

A =

f(e|c1, c1) . . . f(e|c1, cn)
...

...
f(e|cn, c1) . . . f(e|cn, cn)

 , Y =

α(c1, e)...
α(cn, e)

 ,
B =

f(e|c1)× (E[e|c1]− E[e])
...

f(e|cn)× (E[e|cn]− E[e])

 .
(12)

Here A is an X × X coefficient matrix for e such that for
each c, x ∈ X the corresponding element is:

Acx = f(e|c, x), (13)

where f(e|c, x) is defined in eq. (10). We can then calcu-
late α(c, e) (for each c ∈ X) by solving the system. Such a
system has a unique solution if A is full rank.

The overall procedure for calculating causal significance
for a set of effects is given in algorithm 1.

Correctness
The key contribution of the paper, which claims the correct-
ness of both relationships and exact effect size obtained by
algorithm 1, is summarized as follows. Proof is given in sec.
A (under theorem A.1) of supplementary material.

Theorem 1. Under assumptions 1 to 3, ifA is full rank, then
α(c, e) is exactly the impact of c on e.

The theorem indicates that, when c is not a genuine cause
of e, α(c, e) will be exactly zero.



Algorithm 1 Calculate causal significance

Input:
Continuous-valued time series
Set of effects, E = {e1, . . . , em}
Set of potential causes for each ei, i ∈ [1,m]
X = {Xe1 , . . . , Xem}, where Xei is a set of potential
causes {c1, . . . , cn} for ei

Output:
α(c, e) for all c ∈ X and e ∈ E

1: for each e in E do
2: Build a system of linear equations based on eq. (11)
3: Calculate α(c, e) for all c ∈ Xe by solving the system
4: return α(c, e) for all relationships

Time complexity
We assume N variables and T timepoints, where T >
N2 and each variable is measured (or a value is imputed)
for each timepoint. Then, while calculating εavg(c, e) is
O(N3T ), α(c, e) is O(N2T ), leading to an order of mag-
nitude improvement in speed.

The complexity of building each equation in a system is
O(T ), with each system having N equations. For N effects,
building all equations is O(N2T ). Solving all N systems
with direct methods is O(N4), leading to a total complex-
ity of O(N2T + N4). However, as we assume T > N2,
the complexity is then O(N2T ). See sec. B (claim B.1) of
supplementary material for proof.

When N < T < N2, an alternative method can be used
to calculate α(c, e) by making Xe the set of all variables,
allowing the use of one equation system rather than N . Un-
der the same assumptions, α(c, e) is still exactly the impact
of c, and the complexity of the method remains O(N2T ).
Note that although the two methods have the same theoreti-
cal complexity, in practice even when N < T < N2, algo-
rithm 1 may be faster as |Xe| can be much smaller than the
number of variables.

Approximation
Our guarantees of correctness and speed rely on assump-
tions that may not hold in all cases. However, we provide an
approximate solution to address one main case.

When coefficient matrix A is not full rank, the system of
linear equations does not have a unique solution. One pos-
sible solution is to find a linearly independent subset of X ,
Xlis, such that its coefficient matrix is full rank, so that the
subsystem is guaranteed to have a unique solution.

Now, we propose a greedy method to search for Xlis (al-
gorithm 2). The key steps of the method are as follows.

Step 3. Select cmax from X to maximize |E[e|cmax] −
E[e]|. By doing this, we attempt to include the most seem-
ingly genuine cause in Xlis as early as possible.

Steps 6 to 7. If the coefficient matrix of Xlis ∪ cmax is
full rank, then add cmax to Xlis.

Proof that the coefficient matrix of Xlis obtained by algo-
rithm 2 is full rank is given in sec. A (under claim A.1) of
supplementary material. Thus a subsystem of eq. (9) for all
α(c, e) (c ∈ Xlis) is guaranteed to have a unique solution.

Algorithm 2 Search for Xlis

Input:
Set of potential causes X
Effect e

Output:
A linearly independent subset of X , Xlis

1: Xlis = ∅
2: repeat
3: cmax = argmax

c∈X
|E[e|c]− E[e]|

4: X = X\cmax

5: Alis = coefficient matrix of Xlis ∪ cmax

6: if Alis is full rank then
7: Xlis = Xlis ∪ cmax

8: until X = ∅
9: return Xlis

If Xlis includes all genuine causes, then for each c ∈ Xlis,
α(c, e) is still exactly the impact of c on e. Proof for this
claim is the same as for the claim that in general α(c, e) is
exactly the impact of c on e and is also shown in the simu-
lated common cause and effect experiment.

The complexity of findingXlis isO(N3). When T > N2,
the complexity of algorithm 1 including this is stillO(N2T ).
Proof for the two claims are given in sec. B (under claim B.2
and corollary B.1, respectively) of supplementary material.

Experimental results
We compared the proposed method (α for short) with three
commonly used methods for causal inference in time se-
ries data: that of (Kleinberg 2011) (εavg for short), dy-
namic Bayesian networks (DBNs) (Friedman, Murphy, and
Russell 1998; Murphy 2002) and bivariate Granger causal-
ity (Granger 1980) (Granger for short). For each method,
the false discovery rate (FDR, false discoveries as a fraction
of all discoveries), false negative rate (FNR, false negatives
as a fraction of all negatives) and the run time are reported.
Note that each time lag for each relationship is treated as a
separate discovery or non-discovery, so if the true window is
[1, 3] and an algorithm finds only lag 1, that equates to two
false negatives. Run time is the total time for running each
method on all datasets sequentially, and does not account for
speedups due to parallel computations.

The approaches were tested on multiple simulated
datasets (allowing us to evaluate results against ground truth)
that incorporate increasingly difficult cases, ranging from
simple datasets where all assumptions hold to complex ones
where many do not. All the data are publicly available at:
http://www.cs.stevens.edu/∼skleinbe/data.html.

Simulated common cause and effect datasets
Methods We generated two datasets with common cause
(where variable 1 causing 2 to 4) and common effect (where
variables 1 and 2 causing 3 and 4) structures discussed ear-
lier. The data consist of 20 variables (16 of them are noise)
and 1000 timepoints. The value of a variable e at timepoint



t, e(t), is given by:

e(t) =
∑
c∈X

n∑
i=1

I(c, e), (14)

where n = |T (c) ∩ [t− s, t− r]|.

Here T (c) is the set of timepoints where c is true, [r, s] the
time window of c for e, and I(c, e) the constant impact of
c on e. Thus, e’s value at t is the sum of the impact of its
causes that occurred previously. The time window of all re-
lationships was set as [r, s] = [1, 3], and the impact of each
cause was set as I(c, e) = ±5. The value of variables with
no causes were randomly set to zero or one at each time.

DBNs were evaluated with Banjo (Hartemink 2008),
with the major parameter settings being: searcherChoice =
SimAnneal, minMarkovLag = 1, maxMarkovLag = 3, and
maxTime = 1 hour. Banjo requires discrete data, so we used
three bins (positive, negative, and zero).

Granger was evaluated with the granger.test function in
MSBVAR (Brandt 2012), with time lags in [1, 3]. Significant
relationships were determined using a p-value cutoff of 0.01.

The overall method and parameter settings of α is the
same as for εavg except for the calculation of causal sig-
nificance (eq. (11) versus eq. (2)). To calculate the rank of a
coefficient matrix and solve the system of linear equations,
Gaussian elimination was used. The time window for both
methods was set as [1, 3]. To determine significant relation-
ships, z−values (based on causal significance) were used
with p−value cutoff of 0.01.

Results Results across both datasets are shown in table 1.
The FDR and FNR of α are 0, and the FDR of α is signifi-
cantly lower than that of εavg and Granger. Note that DBNs
only found relationships at lag 1, instead of 2 and 3. Further,
α has the fastest runtime, followed by Granger and εavg.
The runtime of DBNs is a parameter set by the user, as it
determines how much of the search space can be explored.

The FDR of α and εavg differ due to the deterministic re-
lationships with few correlated variables. Take the common
cause structure for instance. When using εavg , each effect
was found as a cause of itself and the others. However, when
using α, such spurious relationships were not found, and in-
stead their obtained causal significance was 0.

In this experiment, the performance of the method for
searching for Xlis was also tested. For instance, all 20 vari-
ables were originally found as potential causes of variable 2.
As the coefficient matrix A was not full rank, Xlis had 18
variables including the genuine cause, variable 1. The causal
significance of the 17 spurious causes was 0, and that of vari-
able 1 was 5 (its actual impact).

Simulated random datasets

Methods We generated 20 datasets each with a different
random causal structure. The data include 20 variables and
1000 timepoints. The differences from the previous experi-
ment are: 1) causality here is probabilistic, with the proba-
bility of each cause yielding its effects as 0.5; 2) r = s and

was randomly chosen in [1, 3]. Thus the data is generated by:

e(t) =
∑
c∈X

n∑
i=1

I(c, e)× δ, (15)

where n = |T (c) ∩ [t− s, t− r]|.
Here P (δ = 1) = P (δ = 0) = 0.5. The mean number
(across the 20 datasets) of relationships in each dataset is
41.8, with standard deviation of 4.905.

For DBNs and Granger, their implementation (including
the method and threshold for determining significant rela-
tionships) are the same as those in the previous experiment.
For εavg and α, thresholds were chosen according to the
z−values of causal significance, while controlling the local
false discovery rate at 0.01 (using the locfdr package (Efron,
Turnbull, and Narasimhan 2011)). Time lags in [1, 3] were
used for all methods.

Results Results across all 20 datasets are shown in table 1.
As in the first experiment, the FDR of α is lower than that
of εavg and much lower than that of Granger, and the FNR
is lower than that of DBNs. The run time of Granger is the
least, followed by α and εavg .

Similar to the first experiment, the FDR of εavg and α dif-
fer primarily due to the common cause problem of the for-
mer, while DBNs result in the highest FNR. For example, in
one dataset εavg found three spurious relationships between
effects of a common cause while α found no spurious re-
lationships in this dataset. Across the 20 datasets, α in fact
found only one spurious relationship, and it was one where
the relationship is genuine but the time window is incorrect.

Simulated financial datasets
Methods Kleinberg (2012) developed a set of simulated
market data, consisting of returns for 25 portfolios with
varying causal structures and two 4,000 day observation
periods. There are 10 underlying causal structures (sets of
causal connections between portfolios) and two different ob-
servation periods, yielding a total of 20 datasets. The market
model is given by a factor model (Fama and French 1992),
so that the return of a portfolio i at day t is:

ri,t =
∑
j

βi,jfj,t′ + εi,t, (16)

where εi,t is the sum of the portfolio specific, randomly gen-
erated, idiosyncratic terms and all εk,t−l (where portfolio k
is a cause of portfolio i’s returns at a lag of l days). All re-
lationships have a randomly generated lag of 1–3 days. The
mean number of relationships in each dataset is 20.6, with
standard deviation of 12.107.

DBNs were tested as before, using the same parameters
and lags. For Granger, many p-values were near zero, so
thresholds were chosen based on the F -statistics, while con-
trolling the local false discovery rate at 0.01 (using the locfdr
package (Efron, Turnbull, and Narasimhan 2011)).

For εavg and α, we used the same lags to infer positive
causal relationships. That is, the setX only includes cwhere
E[e|c] > E[e]. The method and threshold for determining
significant relationships are the same as used with the ran-
domly generated datasets.



Table 1: Results on simulated data. Run time is in seconds. *Run time for DBNs is a user-specified parameter.

Common cause & effect Random Finance
Method FDR FNR run time FDR FNR run time FDR FNR run time
DBNs 0.000 0.006 7200* 0.004 0.025 72000* 0.152 0.013 72000*
Granger 0.488 0.000 23 0.798 0.007 230 0.718 0.015 905
εavg(c, e) 0.650 0.000 1567 0.053 0.015 68186 0.078 0.012 85678
α(c, e) 0.000 0.000 16 0.001 0.006 5088 0.036 0.006 8456

Results Results are shown in table 1. The FDR and FNR
of α are lower than those of the other methods.2 As in the
previous experiments, the FDR of εavg and α differ mainly
because of the common cause problem of the former. For
instance, in one dataset of 40 relationships with lags ranging
from 1 to 3, εavg found five spurious relationships between
effects of a common cause, whereas α found none. The run
time of Granger is the least, followed by α and εavg .

Note that in the financial datasets, the following assump-
tions do not hold: 1) causal relationships are deterministic,
2) causal impact is constant, and 3) effect’s value is constant
when no cause is present. However, even though the FDR
of α is not zero, we demonstrate that the accuracy is still
significantly improved compared to other methods.

Conclusion
Inferring complex temporal causal relationships is impor-
tant for applications in many areas such as biology and fi-
nance, but prior methods either allowed only pairwise re-
lationships, failed to include timing information, or were
computationally complex. Other methods have been pro-
posed to address these challenges, but remained computa-
tionally complex and faced difficulties with deterministic re-
lationships and datasets with few variables. In this paper,
we propose an approach for efficient causal inference from
time series data. Unlike previous approaches that use only
features of the data and infer causal relationships individu-
ally, this method exploits the connections between each rela-
tionship’s causal significance. The method reduced the time
complexity relative to the prior state of the art fromO(N3T )
to O(N2T ), while increasing accuracy. In experimental re-
sults, our proposed method had both the lowest FDR and
FNR on all datasets, while prior approaches faced a tradeoff.
Further, the computational speed was reduced significantly
compared to the prior state of the art, going from about 26
minutes to 16 seconds in the first dataset, and from about 24
hours to about 2.4 hours in the last. In the future we aim to
extend this approach to improve exploration of the hypothe-
sis space (generation of potential causes to be tested), and to
identify potential latent variables.
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