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Abstract
Many applications of causal inference, such as find-
ing the relationship between stock prices and news
reports, involve both discrete and continuous vari-
ables observed over time. Inference with these
complex sets of temporal data, though, has re-
mained difficult and required a number of simplifi-
cations. We show that recent approaches for infer-
ring temporal relationships (represented as logical
formulas) can be adapted for inference with contin-
uous valued effects. Building on advances in logic,
PCTLc (an extension of PCTL with numerical con-
straints) is introduced here to allow representation
and inference of relationships with a mixture of
discrete and continuous components. Then, find-
ing significant relationships in the continuous case
can be done using the conditional expectation of an
effect, rather than its conditional probability. We
evaluate this approach on both synthetically gener-
ated and actual financial market data, demonstrat-
ing that it can allow us to answer different questions
than the discrete approach can.

1 Introduction
Relationships such as “smoking causes lung cancer” or “gene
A regulates gene B” can help us decide to quit smoking, or
investigate a pathway during drug development, but in many
cases it is useful to understand the relationship between the
magnitude of the cause and the probability of the effect or
explore causes that produce the greatest level of the effect.
We may want to know not only whether positive news about
a company causes its price to increase, but how much of
an increase we can expect, when it will happen, and what
other factors are needed. To do this we need to reason about
complex relationships that have qualitative, quantitative, and
temporal components. Thus far, approaches to causal infer-
ence have focused on separate aspects of this problem, with
none addressing all areas. Methods based on Bayesian net-
works [Pearl, 2000] yield compact representations of sparse
systems, but neither they nor their temporal extensions, dy-
namic Bayesian networks [Murphy, 2002], allow for auto-
mated representation of and reasoning about relationships
more complex than one variable causing another, or involving

windows of time. Similarly, Granger causality [1969] allows
for only discrete lags between cause and effect and assumes
that the relationships are between individual variables. Fi-
nally, prior work on inferring complex causal relationships
represented as logical formulas identified factors that substan-
tially impact the probability of the effect, but required that all
variables be discretized [Kleinberg and Mishra, 2009].

In this work we address the problem of inference when we
are interested primarily in the level of the effect. We will
show that instead of a difference in probability, a cause’s sig-
nificance for an effect can be assessed using an average dif-
ference in conditional expectation. By extending the under-
lying logic used to represent the relationships, this approach
allows for structured representation and automated inference
of complex temporal relationships with discrete and contin-
uous components. The result is a succinct representation of
the most significant relationships in a set of data. We evaluate
this approach empirically on both synthetic and actual finan-
cial market data to validate it and assess its practical use.

2 Background
We begin by reviewing the causal inference framework being
extended. Earlier work by Kleinberg et al. [2009] introduced
a method for causal inference based on probabilistic notions
of causality, where the relationship between cause and effect
is described in a structured way using probabilistic computa-
tion tree logic (PCTL) formulas. To assess whether the for-
mulas satisfied by the data are significant, the average dif-
ference each cause makes to the probability of its effect is
computed and techniques for multiple hypothesis testing are
applied to determine the level at which a relationship should
be considered statistically significant [Efron, 2004].

2.1 Probabilistic computation tree logic
We briefly discuss PCTL and refer the reader to [Hansson and
Jonsson, 1994] for a more in depth description. Formulas in
the logic are defined relative to a probabilistic Kripke struc-
ture (also called a discrete time Markov chain (DTMC)), con-
sisting of a set of states, S, a start state si, a total transition
function T that gives the probability of transition between
all pairs of states and a labeling function L that indicates the
propositions from the set of atomic propositions A that are
true at each state. In the case of causal inference we do not



normally have or infer these structures but instead test the re-
lationships directly in the data.

There are two types of formulas in PCTL: state formulas
that describe properties of individual states, and path formu-
las that describe properties along sequences of states. These
can be defined inductively as follows:1

1. Each atomic proposition is a state formula.
2. If f and g are state formulas, so are ¬f and f ∧ g.
3. If f and g are state formulas, 0 ≤ r ≤ s ≤ ∞ and
r 6=∞, fU≥r,≤sg and fW≥r,≤sg are path formulas.

4. If f is a path formula and 0 ≤ p ≤ 1, [f ]≥p and [f ]>p

are state formulas.
The operators in item (2) have their usual meanings. Item
(3) describes until (U ) and weak-until (W ) formulas. First,
fU≥r,≤sg, means that f must be true at every state along the
path until g becomes true, which must happen in between r
and s time units. The weak-until formula is similar, but does
not guarantee that g will ever hold. In that case, f must hold
for at least s time units. Finally, in (4) probabilities are added
to path formulas to make state formulas. Then the sum of the
probabilities of the paths from the state where the path for-
mula holds is at least p. One shorthand that will be useful for
representing causal relationships is “leads-to”. The formula:

f ;
≥r,≤s
≥p g ≡ AG[f → F≥r,≤s≥p g] (1)

means that for all paths, from all states, if f is true, then g
will become true in between r and s time units with at least
probability p. This operator is defined differently relative to
traces (where the problem is closer to runtime verification
than model checking) as described in [Kleinberg, 2010] and
the semantics here.

2.2 Causes as logical formulas
To use this logic for causal inference, Kleinberg et al. [2009]
assumed that the system has some underlying structure that is
not observed, where the temporal observations (such as stock
price movements or longitudinal electronic health records)
can be thought of as observations of the sequence of states
the system has occupied. In model checking, these sequences
are referred to as traces. The standard probabilistic notion of
causality, that a cause is earlier than and raises the probabil-
ity of its effect, can then be translated into PCTL to define
potential (prima facie) causes.
Definition 2.1. Where both c and e are PCTL formulas, c is a
potential cause of e if, relative to a finite trace (or set of traces)
or model, the following conditions all hold: the probability of
c eventually occurring at some time is greater than zero, the
probability of e is less than p and:

c;≥1,≤∞≥p e (2)

These features are insufficient for identifying causes, since
many things (such as common effects of a cause) can occur
before and seem to raise the probability of an effect. In or-
der to weed out these spurious causes, one can calculate the

1Lower bounds on time windows do not appear in the original
paper by Hansson et al. [1994], but were added by Kleinberg [2010].

average significance of each cause for its effect. The basic
premise of this approach is that when testing for spuriousness,
one is trying to find whether there are better explanations for
the effect. With X being the set of all potential causes of e,
the significance of a particular cause c for an effect e is:

εavg(c, e) =
∑

x∈X\c

P (e|c ∧ x)− P (e|¬c ∧ x)
|X \ c|

(3)

Note that the relationships between c and e, and x and e, have
time windows associated with them (as in equation (2)), so
the conjunctions in (3) refer to instances where e occurs such
that either c or x could have caused it (e.g. thinking of each
time window as a constraint, both constraints on when e could
have occurred are satisfied). This average significance score
can be used to partition the potential causes.
Definition 2.2. A potential cause c of an effect e is an ε-
insignificant cause of e if |εavg(c, e)| < ε.
Definition 2.3. A potential cause c of an effect e that is not an
ε-insignificant cause of e is an ε-significant or just-so cause
of e.

To determine an appropriate value of ε, the problem is
treated as one of multiple hypothesis testing, aiming to con-
trol the false discovery rate. Assuming many hypotheses are
being tested and the proportion of true positives is small rel-
ative to this set, methods for empirically inferring the null
hypothesis from the data can be applied [Efron, 2004] since
the values of εavg for large scale testing mostly follow a nor-
mal distribution, with significant (non-null) values deviating
from this distribution [Kleinberg, 2010].

3 Inference of relationships with discrete and
continuous components

We now introduce an approach for inferring relationships
with continuous-valued effects, and explicitly representing
the constraints on continuous valued causes as part of their
logical formulas. In the previous section we described evalu-
ating the significance of a cause for its effect using the aver-
age difference in probability with each other possible cause of
the effect held fixed. When an effect is continuous, we instead
want to determine the impact of a cause on the level of the ef-
fect, and can do this using the average difference in expected
value. For instance, we may want to determine the effect of
medications on weight, where it may be difficult to discretize
this effect of interest, though the potential causes are naturally
discrete variables. In many practical cases the data are noisy
and prone to error, making discretization useful, though it is
difficult to choose the right partitioning. Further we do not
want a generic binning of variables, but rather the ranges of a
cause that are most significant for an effect. We propose that
by making these part of the logical formula representing the
relationship between cause and effect, we can allow for work
on automatically reevaluating these ranges after inference in
an efficient way (as the significant relationships are a small
fraction of the full set tested, constraining the search space).2

2In Kleinberg & Hripcsak [2011] we show how time windows
can be inferred without prior knowledge of the timing or relation-



The overall approach is to generate a set of logical formu-
las, determine which are potential causes relative to a set of
time series data, then assess the significance of these (parti-
tioning the potential causes into significant/insignificant).

3.1 Representation
Taking inspiration from a similar extension of LTL [Don-
aldson and Gilbert, 2008], PCTLc (probabilistic computa-
tion tree logic with numerical constraints) is introduced to
express temporal and probabilistic properties involving con-
tinuous and discrete variables.

Syntax
PCTLc formulas are defined relative to a finite set of boolean-
valued atomic propositions, A, and variables, V , taking val-
ues in R. We will use the convention of referring to members
of A using letters from the beginning of the English alphabet
and referring to members of V using letters from the end of
the alphabet. With a ∈ A, v ∈ V , and f being a function that
takes a set of variables and maps these to a value in R:

num ::= R | v | f(v1, . . . , vn)
State formulas:
ϕ ::= true | a | v./ num | ¬ϕ | ϕ1 ∧ ϕ2 | [ψ]≥p | [ψ]>p

Path formulas:
ψ ::= ϕ1U

≥r,≤sϕ2 | ϕ1 ;≥r,≤s ϕ2

where 0 ≤ r ≤ s ≤ ∞ and r 6= ∞; 0 ≤ p ≤ 1; and
./ ∈ {≥, >,<,≤}. We initially implement functions, f , for
a standard set of mathematical operations (+,−, ∗ and /), and
note that operators expressing ∨,→ and weak-until (W ) can
be derived from the set of operators above.

Semantics
We describe the semantics of PCTLc relative to traces, as
this is the most relevant case for causal inference. First we
must introduce some terminology. Assume there is a trace
T where each timepoint is an observation of the system con-
sisting of truth values for propositions and numerical values
for the continuous-valued variables. T could also be a set of
traces, though for simplicity we refer to trace T throughout.
There is a labeling function La(t) that maps timepoints to the
atomic propositions true at them, and another Lv(v, t) that
maps a timepoint and continuous valued variable to the vari-
able’s value at that time.3 A timepoint t in trace T satisfying
formula f is written as t |=T f . A sequence of times (a path)
is denoted by π = t0, t1, . . . , tn, the subset of π beginning at
time i by πi = ti, ti+1, . . . , tn, and a particular time ti in π is
π[i]. The probability of an until (U ) formula is the number of
timepoints beginning paths that satisfy the formula, divided
by the number of times satisfying ϕ1 ∨ ϕ2. That is,

|{t ∈ T : πt |=T ϕ1U
≥r,≤sϕ2}|

|{t ∈ T : t |=T ϕ1 ∨ ϕ2}|
(4)

ships in a set, and discuss how the algorithm can be applied to the
problem of discretization.

3We can define such functions relative to a model though that is
somewhat more complex, as we want to define the values of vari-
ables in each state using constraints (rather than having an observed
value).

Similarly, the probability of a leads-to (;) formula is the
number of times beginning paths that satisfy the formula, di-
vided by the number of times satisfying ϕ1:

|{t ∈ T : πt |=T ϕ1 ;≥r,≤s ϕ2}|
|{t ∈ T : t |=T ϕ1}|

(5)

The probability of until and leads-to formulas are dealt with
separately as the probabilities must be calculated differently
in traces.

The satisfaction relation |=T is defined as follows.
t |=T true ∀t ∈ T
t |=T a if a ∈ La(t)

t |=T v./ num if Lv(v, t)./ num

t |=T ¬ϕ if not t |=T ϕ

t |=T ϕ1 ∧ ϕ2 if t |=T ϕ1 and t |=T ϕ2

π |=T ϕ1U
≥r,≤sϕ2 if there exists a j ∈ [r, s] s.t.

π[j] |=T ϕ2 and
π[i] |=T ϕ1, ∀i ∈ [0, j)

π |=T ϕ1 ;≥r,≤s ϕ2 if π[0] |=T ϕ1 and there exists a
j ∈ [r, s] such that π[j] |=T ϕ2

T |=T [ψ]≥p if probability of ψ in T is ≥ p
T |=T [ψ]>p if probability of ψ in T is > p

Truth values of formulas are defined recursively, so to ver-
ify these in traces, one may begin by checking the most
deeply nested subformulas and build up to the outermost for-
mulas. For example, to check

[(a ∧ [v ≥ 3]) ;≥8,≤12 b]≥p

in a trace, we begin by finding the states that satisfy v ≥ 3,
and then label those that also satisfy a with that conjunction.
Then, we find timepoints beginning paths that satisfy this ini-
tial conjunction where b is true in the specified window after-
ward. Finally, using the set of states labeled with (a∧[v ≥ 3])
and the paths satisfying the leads-to formula, we can calculate
the probability of the formula using equation 5. While we do
not discuss the full details here, the complexity of checking a
formula f in a trace of length T , where |f | is the size of the
formula, is O(T 2 × |f |). While the approach is straightfor-
ward, we can improve the computational complexity in prac-
tice by noting that with f ;≥r,≤s g, f and g will already be
checked and one only needs to test whether the times satis-
fying f result in g, rather than iterating over all times. Algo-
rithms for checking until and leads-to formulas are described
in appendix A.

3.2 Inference
Causal relationships in PCTLc
Using PCTLc, we can express constraints such as x ≤ (y+z),
and can describe properties such as “elevated glucose for 2-3
months leads to hemoglobin A1C above 8%.” Each variable
that appears in a state formula must do so with (or as part of)
a numerical constraint, so the resulting formula is boolean-
valued. Thus with x ∈ V , [x ≥ 5.6] ∧ a ∧ b is a valid PCTLc
state formula, while x ∧ a ∧ b is not. One could allow un-
constrained variables using probability density functions and



conditional densities, but this approach can be difficult with
noisy data and is computationally complex when a formula
contains multiple continuous variables. Many cases of in-
terest also have minimum values for causes to be effective
(10mg of aspirin cannot relieve a headache, but 325mg may)
so putting together all of the values of the cause will give an
unduly low estimate of the cause’s significance for the effect.

Conditions for causality
To determine which hypotheses are potential causes of con-
tinuous valued effects we must update definition 2.1 in two
ways: using expectations rather than probabilities and allow-
ing for negative causes. With binary variables, we can easily
view a preventative (something that lowers the probability of
an effect, e) as raising the probability of ¬e, so that a cause al-
ways raises the probability of its effect. Instead, with continu-
ous effects we may have causes that lower the expected value
of the effect (such as a drug causing a decrease in weight).
To test for potential causality we can calculate the expected
value of e, E[e], from the data, then label times where e is
greater than this value, e > E[e].4 Then, a positive causal
relationship can be represented with the following leads-to
formula:

c;≥r,≤s≥p [e > E[e]]. (6)

Definition 3.1. Where c is a PCTLc formula and e is a
continuous-valued variable taking values in R, c is a poten-
tial cause of e if, with c being earlier than e:

E[e|c] 6= E[e]. (7)
This says that when c occurs we can expect a different value
of e than we would otherwise.5 Note that there is a win-
dow of time [r, s] between c and e, where 1 ≤ r ≤ s ≤ ∞
and r 6= ∞. We omit the temporal subscripts, but note that
the expectations are defined relative to these. With a set of
time series data the expectation is calculated using frequen-
cies (#(x) denotes the number of timepoints where x holds):

E[e|c] =
∑
y

y
P (e = y, c)

P (c)
=
∑
y

y
#(e = y, c)

#(c)
(8)

Significance of causes
To find which of a set of possible causal relationships are
significant, we need to assess how much of a difference the
causes make to the value of their effects. We want not just
the average effect that results from the cause, but the average
effect conditioned on other possible explanations. The signif-
icance of a potential cause c (defined as in 3.1) for an effect,
e, where X is the set of prima facie causes of e is measured
by:

εavg(c, e) =
∑

x∈X\c

E[e|c ∧ x]− E[e|¬c ∧ x]
|X \ c|

. (9)

The definitions of ε-significant and ε-insignificant remain as
in 2.2 and 2.3, but with εavg calculated as in equation (9).

4We may also test more specific properties such as x ≤ E[e] ≤
y, labeling the timepoints where this is true and proceeding as above.

5One could replace 6= in the definition with > to stipulate only
positive prima facie causes and < for negative ones.

This measure retains the important properties of the previ-
ously defined εavg: with a large number of insignificant re-
lationships it will be normally distributed, and factors spuri-
ously associated with an effect will have small values of it.
As before, some ε-insignificant relationships may be spuri-
ous (e.g. they can be explained by a common cause) or may
simply be very small in magnitude, in which case they are
of little use for our purposes. Note that there is no difficulty
in handling multiple causes of an effect that vary in signifi-
cance and that this approach allows us to correctly identify a
common cause of two effects as such.

Difference from discrete case
Let us look at an example illustrating how the results of this
approach can differ from those obtained using the probability
of a discretized effect. Below is a short sequence of observa-
tions of a continuous variable e, and a discrete event c.

1 2 3 4 5 6 7time

e

c

0.8 0 2 5 2 3.5 0

• • • •

To determine if c is a potential cause of e in exactly 1 time
unit, we test whether the expected value of e and the condi-
tional expectation of e given c differ. Here E[e] is 1.9, while
E[e|c] is 2.125, so c increases the expected value of e and
is a potential cause of it. If instead we discretize e using a
common approach, calling values below the expected value
“false” and above “true”, we find that P (e) is 4/7 (≈ 0.57),
and P (e|c) = 0.5, so c does not raise the probability of e and
would not be considered as a potential cause of it. While we
omit the subscripts, this is the probability of e being true in
exactly one time unit after c being true. In this case it may be
that c is part of a significant cause, c ∧ d where c and d alone
cannot cause e. If we have unmeasured variables or missing
data, as we do here since d is not included, it can be difficult
to find c’s relationship to e. Using the expected value allows
us to find factors that make a large but less consistent differ-
ence to their effects, while the probability difference requires
a consistent impact. We demonstrate this experimentally in
Section 4.2 where we find relationships that are extremely
significant during only part of a financial time series studied.

4 Experimental results
One area where we are particularly interested in the level of
effects is in finance. For risk management and portfolio re-
balancing, we want to know not only what causes a price in-
crease, but that one cause leads to an expected gain of 15%
with probability 0.2, while another leads to a gain of 1% with
a probability of 0.8. To test the approach in this area and
understand how it compares to methods that discretize the
variables, we first evaluate it on simulated returns where the
embedded relationships are known and false discovery rates
can be calculated, and then apply it to actual market data.

4.1 Synthetic financial time series
Kleinberg et al. [2010] developed a dataset simulating daily
stock market returns with various types of causal relation-



ships embedded in the data. Using a factor model based on
the Fama-French daily factors [1993], that work created a
market consisting of 25 portfolios for two 3001 day time se-
ries with five types of causal influence and one scenario with
no embedded causality (yielding a total of 12 data sets). The
return of a portfolio i at time t is given by:

ri,t =
∑
j

βi,jfj,t′ + εi,t (10)

where the return of factor j at time t′ is fj,t′ , fj,t′ ∈ R and
εi,t is a random variable with mean zero. The null case is
t′ = t−3 for all factors and portfolios. There were two cases
with shifted factors: one with half the stocks influenced by
factors at t′ = t − 1, and another where half the stocks had
their factors lagged individually by a random value in [0, 3].
Data was generated for these three scenarios, and then the
same scenarios with some direct relationships between port-
folios added (captured through dependence of one portfolio
on the residual term of another at the previous timepoint). In
addition to the direct influences, we should find that stocks
responding to earlier factors cause those responding later as
the factors are not independent of the portfolios.

We compare our results to those from [Kleinberg et al.,
2010] and the application of Granger [1969] causality from
that work. The εavg values remained normally distributed in
the absence of embedded causal relationships, ensuring that
when there are no causal relationships we do not infer any. In
order to determine which εavg values were statistically sig-
nificant, we initially applied the same approach as in [Klein-
berg, 2010], inferring the empirical null using the locfdr pack-
age [Efron et al., 2008] and controlling the local false discov-
ery rate at 0.01. The false discovery rate (FDR, proportion
of spurious causes called significant out of all causes called
significant) and false negative rate (FNR, proportion of true
causes called insignificant out of all causes called insignifi-
cant) for our approach over all datasets were: 0.144 and 0.039
while those of [Kleinberg et al., 2010] were: 0.077 and 0.042
and the MSBVAR implementation of Granger causality were:
0.654 and 0.086. In the datasets that lag factors for half the
stocks, there are a large number of true positives, violating
one of the assumptions of methods for empirical inference
of the null hypothesis. Using the theoretical null hypothesis
(that the null values are given by N(0, 1)) instead leads to a
low FDR, 0.030, at the expense of a somewhat larger FNR,
0.100. As shown in figure 1, these cases have bimodal distri-
butions, with a clear separation between the null and non-null
values. When we use this separation to choose the thresh-
old (where f(z) is at its minimum between the peaks), the
method described here outperforms the approach based on
discrete values, with an FDR of 0.003 compared with 0.010
for the discrete method (in this case both have the same FNR,
0.048). Thus using continuous data does better than the dis-
cretized data when we do not use the empirical null to choose
the threshold.

4.2 Actual market returns
In addition to evaluating the proposed approach on a set of
simulated data, it was also applied to actual daily market data.
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Figure 1: Histogram of z-values (calculated as the number of
standard deviations of an εavg from the mean) for one simu-
lated financial market data set where half the stocks have their
factors shifted by the same amount.

Wharton Research Data Services (WRDS) was used to ob-
tain daily returns for the same time period and set of stocks
as in [Kleinberg et al., 2010], yielding all 252 trading days
in 2007 and 286 stocks from the S&P 500. Relationships
between pairs of stocks were tested with a time window of
exactly 1 day (as it is believed that there is a sharp drop off in
influence after that time). Interestingly, a number of the top
relationships found involved a price decrease in stocks (such
as Schlumberger Ltd. and Smith International Inc.) causing
a price increase in others (particularly Goldman Sachs Group
Inc.). Unlike the synthetic case, where the true relationships
had the highest εavg values in both methods, and the biggest
difference was in estimation of the null hypothesis, results
differed considerably on the actual market data.

Here many more significant relationships were identified:
915 versus 27 for the discretized data. We believe that the
reason for this is likely the non-stationary nature of the real
data. While the simulated market was governed by the same
relationships throughout the entire time series, this is not nec-
essarily the case for the actual market, where regulations and
partnerships between companies change constantly and there
is much hidden information. Discretized data seems to favor
inference of relationships that persist across time regardless
of magnitude, while the continuous data can allow us to find
very large effects that may be true for only part of the time
series. This is useful for analysis of data in a changing mar-
ket, since we want to know what the important relationships
will be going forward, not just what they were in the past.

In order to verify this intuition we examined these results
in detail and conducted further simulations. First, there were
many relationships satisfied for only part of the time series.
That is, a price increase was insignificant at the beginning
of the time series before increasing dramatically in the later
part. In the case of Goldman Sachs Group Inc. (GS) increas-
ing after each time Schlumberger Ltd (SLB) decreased, the
expected value of an increase was 0.5 points for the first 150
days, and 2.2 during the last 102 days, increasing further to
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Figure 2: Price changes in GS each day after SLB is down the prior day are shown for one year. The expected value of an
increase in GS is much larger during the second half of the time series than in the first half. Values of zero are cases where SLB
was up the previous day.

3.0 for the final 52 days. Figure 2 shows the price change in
GS after each instance of SLB decreasing. While it may ap-
pear visually that this is due to more instances of SLB being
down in the last half, this is not supported by the numerical
analysis. We further verified this by combining data from the
simulated series such that the first two-thirds of the data came
from one distribution (with no embedded causality) and the
last one-third from another (with a few relationships between
portfolios). Here we were again able to correctly infer some
relationships that were true for only a short time, while mak-
ing the same amount of false discoveries as in the stationary
case.

5 Related work
5.1 Logic
A number of logics have recently been developed for rea-
soning about relationships involving qualitative, quantitative,
temporal and probabilistic components. One of the most sim-
ilar to ours, PLTLc, was developed for studying biochemical
networks where there is a need to represent the concentra-
tion of variables [Donaldson and Gilbert, 2008]. The primary
difference between it and our approach is that PLTLc uses
standard modal operators such as “next” and “finally” to de-
scribe when properties hold, but does not allow quantification
of time. In contrast, PCTLc allows us to reason about the
amount of time a property holds, or how long it will take for
a property to hold after a condition is met. Most seemingly
similar logics, such as [Kanazawa, 1991], relate primarily to
planning problems, where causality amounts to changing the
truth values of variables. Instead of deduction from a set
of rules or finding temporal patterns we aim to infer causal
relationships from data. The recently developed annotated
probabilistic temporal (APT) logic allows for representation
of properties such as “after a patient takes drug A they will
develop symptom B with a probability between 10 and 20%
within 2 months” [Shakarian et al., 2011]. However this ap-
proach is closer to frequent pattern mining, making it likely
to find relationships between effects of a common cause (e.g.
yellowed fingers being followed by lung cancer) and includ-
ing unnecessary but frequent features. In contrast we would
find that smoking causes both yellowed fingers and lung can-
cer. While a pattern could be useful for planning, it is not
sufficient for intervening on a system and does not provide
any new knowledge about the system.

5.2 Causal Inference

The most similar approaches to ours in the causal inference
literature are extensions to graphical models and methods
based on Granger causality. Graphical model approaches in-
fer directed acyclic graphs called Bayesian networks (BNs),
where nodes represent variables and edges between them in-
dicate conditional dependencies [Pearl, 2000]. BNs have pri-
marily been applied to discrete variables, but there are exten-
sions to the case of continuous variables and mixtures of con-
tinuous and discrete variables. One of the earliest methods,
introduced by Lauritzen [1989], showed that for a set of con-
tinuous variables that are assumed to have linear conditional
Gaussian distributions, the influence of parent nodes on their
children can be represented as a shift in their means. A similar
approach is taken for continuous-valued descendants of dis-
crete parents, though other approaches are needed for mod-
eling discrete effects of continuous parents [Murphy, 1999].
The resulting graph, called a hybrid Bayesian network, has
been used for applications such as studying gene expression
data [Friedman et al., 2000]. However, these adaptations face
many of the same limitations as BNs since they cannot repre-
sent and infer relationships involving complex sequences of
factors and exact inference is not possible, requiring approx-
imations [Lerner and Parr, 2001].

Dynamic Bayesian networks extend BNs to reason about
time by using one BN for each time slice and connecting
BNs across time slices to indicate how variables at one time
influence those at another. Hybrid DBNs and the recently
introduced continuous dynamic [Grzegorczyk and Husmeier,
2009] and heterogeneous DBNs [Dondelinger et al., 2010]
(which allow for non-stationary time series) extend DBNs
for inference with continuous-valued variables. However,
like DBNs they cannot reason about windows of time or
complex relationships in a structured way. Granger causal-
ity [Granger, 1969], tests whether lagged values of one time
series are informative about another, usually using regression-
based methods. These can handle continuous-valued vari-
ables and while there are some multivariate extensions [Bar-
rett et al., 2010], we are not aware of any versions that go
beyond individual lags (allowing a window of time as in our
approach) or that allow for the complex types of relationships
that can be represented in our logic.



6 Conclusion
Causal inference with a mixture of discrete and continuous
variables observed over time is important for many areas, in-
cluding finance and the analysis of electronic health records.
We have proposed an extension of PCTL called PCTLc for
representing probabilistic relationships involving both dis-
crete and continuous valued variables (as well as numerical
and temporal constraints), and a new method for evaluating
the significance of causes of continuous-valued effects using
conditional expectations. While ours are not exhaustive cri-
teria for causality (not all genuine causal relationships will
meet the criteria set forth), this framework allows us to ask
different types of questions than have previously been possi-
ble, in an efficient way while minimizing false discoveries.
We evaluated the method on both simulated and actual fi-
nancial market data, finding that in the simulated case where
there are no hidden variables, the time series is stationary,
and relationships are not more complex than pairwise, there
is minimal difference between discretization and using the
continuous values (though the FDR with continuous data was
somewhat lower than that with discretized data). However,
in actual market data we are able to make many more in-
ferences and find relationships that were undetected by other
approaches. In particular, we are able to make discoveries in
non-stationary time series where relationships may only be
true for part of the period under study.
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A Algorithms
To check a probabilistic until formula [fU≥r,≤sg]≥p in a
trace T , we can iterate over the states satisfying either f or
g, rather than the full trace,

until-P(f, g, r, s) = (F ← {t : t |=T f}
G← {t : t |=T g}
|{t ∈ F

⋃
G : until(f, g, r, s, t)}|
|F
⋃
G|

)
where the satisfaction of a path beginning at time t of the until
formula is given by:

until(f, g, r, s, t) =
true if t |=T g ∧ r ≤ 0

false if t 6|=T f ∨ t = |T | ∨ s = 0

until(f, g, r-1, s-1, t+1) otherwise

Leads-to formulas can be checked similarly using:

leadsto-P(f, g, r, s) =(F ← {t : t |=T f}
|{t ∈ F : leadsto(f, g, r, s, t)}|

|F |

)

where the path formulas are checked using:

leadsto(f, g, r, s, t) ={
true if (t |=T f) ∧ (πt+r |=T trueU≥0,≤s−rg)

false otherwise

Correctness of the algorithms follows from the definitions and
is easily shown inductively (proofs proceed nearly identically
to those in [Kleinberg, 2010]).
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