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Abstract—Missing values are a common problem in real
world data and are particularly prevalent in biomedical time
series, where a patient’s medical record may be split across
multiple institutions or a device may briefly fail. These data
are not missing completely at random, so ignoring the missing
values can lead to bias and error during data mining. However,
current methods for imputing missing values have yet to
account for the fact that variables are correlated and that those
relationships exist across time. To address this, we propose an
imputation method (FLA-NN) that incorporates time lagged
correlations both within and across variables by combining
two imputation methods, based on an extension to k-NN and
the Fourier transform. This enables imputation of missing
values even when all data at a time point is missing and
when there are different types of missingness both within
and across variables. In comparison to other approaches on
two biological datasets (simulated glucose in Type 1 diabetes
and multi-modality neurological ICU monitoring) the proposed
method has the highest imputation accuracy. This was true for
up to half the data being missing and when consecutive missing
values are a significant fraction of the overall time series length.

Keywords-missing data; correlated data with time-lag; ex-
tended k-NN imputation; Fourier imputation;

I. INTRODUCTION

Missing values occur in almost all real world data, and this
problem is particularly prevalent in clinical data [1] due to
equipment errors, varied sampling granularity or fragmented
data. It may be that a sensor became disconnected, different
sensors record values at different intervals, a patient changed
hospitals during their medical care, or a study subject refused
to answer questions.

However, simply ignoring these missing values can lead to
computational problems such as bias (if an expensive lab test
is only ordered when a doctor suspects it will be positive),
difficulties in model learning (when different subsets of
variables are present for different patients), and reduced
power (if many cases with missing values are not used).
Hence, methods for handling missing data are increasingly
important even as the amount of available data grows.

One challenge is that there are multiple types of missing-
ness, that each require different imputation strategies:
Missing completely at random (MCAR) means the prob-
ability of a variable’s data being missing, P(V), is indepen-
dent of both the other observed variables, O, and V. That

Jjc1439@cumec.columbia.edu

0 70 /140 210 280 350 420 490
t Time
Figure 1: Variables with lagged correlation. z is missing at
t, lyy and [, are time lag of = with y and z respectively

is:
P(V|V,0) = P(V). (1)

For example, a person wearing a sensor that communicates
through wireless signals may be in and out of wireless
coverage for a period of time.

Missing at random (MAR) is when the probability of data
for V' being missing is dependent on variables other than V.
Mathematically,

P(V|V,0) = P(V|O). @)

For instance, the likelihood of a particular test being done
(and its value being recorded) may depend in part on a
patient’s health insurance.

Not missing at random (NMAR) data are those that are
neither MCAR nor MAR. In this case, the probability of a
variable being missing may depend on the missing variable
itself. For instance, people with normal blood pressure may
measure their blood pressure less frequently than people
with high blood pressure. Thus, blood pressure would be
NMAR as its presence depends on itself rather than on other
measured variables. With MAR and MCAR, one can focus
on correlations between missing and observed data, while
NMAR requires specification of the missingness model.

A number of approaches have been developed for esti-
mating missing values, but the existing methods have failed
to address a few key issues: correlations between variables
across time, multiple types of missingness within a variable,
and timepoints where all data are missing.

Take figure 1, which shows three variables over time. Say
variable x is correlated with both y and z at two different
lags (I, and [, respectively). If = is missing at time ¢,
then existing methods impute this value using the values
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Figure 2: System block diagram. Here, %k is the number of
nearest neighbors, p is the number of observed values from
beginning to prior data point of a missing value, q is the
number of missing values after those observed p values.

of y and z at time t. However this is incorrect due to the
lagged correlation. Instead, imputation should be based on
the values of y and z at ¢t — [, and ¢ — [, respectively.

Second, there may be multiple types of missingness in
a variable, yet most current methods (e.g. [2], [3]) assume
that each variable can only have one type of missingness.
In biomedical data, the presence of a variable is often
dependent on both the variable itself and other observed
variables (making a single variable both MAR and NMAR).
For instance, the amount of glucose in a person’s stomach at
a particular time is divided into two parts, liquid and solid
glucose. The amount of liquid glucose depends on both, so
missing values can be both MAR and NMAR.

Finally, single devices are often used to measure multiple
signals (e.g. cellphone accelerometer and GPS, laboratory
panel), making it likely that multiple values will be missing
at a single instance. This poses challenges for many methods,
which require some non-missing data to impute values for
a particular instance and thus may fail to impute a value for
some instances.

In this paper we propose a method, FLk-NN, to impute
missing data from continuous-valued time series, where
there may be lagged correlations between variables, data
may be both MAR and NMAR, and entire time points
may be missing. We compare the approach to others on
multiple datasets from the biological domain (one simulated
and one real-world dataset), demonstrating that FLA-NN has
the highest imputation accuracy for all ratios of missing data
on both datasets, even with up to 50% of the dataset missing
and while being able to impute values for all missing points.

II. RELATED WORK

We briefly describe existing methods for handling missing
data and refer the reader to [4], [5] for a full review.

Table I: Comparison of methods, with ours being FLk-NN.

Name Impute Lagged re- | Multi miss-
empty lationships | ingness in a
instances variable

MEI Yes No No

k-NN No No No

Model-based Yes No No

EM Yes No No

E;(/)Ibablhstlc No No No

MICE Yes No No

FLE-NN Yes Yes Yes

A. Ignoring Missing Values

The simplest way of handling missing data is to remove
the data instances that contain missing elements. Common
examples are list-wise deletion, which removes all instances
having at least one missing value, and pairwise deletion,
which removes an instance if the variables currently being
used contain missing values [2]. In this method, results may
be biased when data are non-MCAR and the statistical power
is reduced due to the deletion of information.

B. Single Imputation (SI)

These methods replace each missing value with a single
imputed value. The simplest and most efficient SI method
is mean or mode imputation (MEI), which fills the missing
values by either attribute mean (for continuous values) or
mode (for nominal values) [6], [7]. However, this method
assumes that data are MCAR, which is not true in most
real world biologic or other data, and it overestimates the
precision of measurements [4].

k-Nearest Neighbor (k-NN) based methods identify the &
most similar instances to the one with a missing value based
on the observed values of the other variables at that instance.
They then apply a predefined rule (e.g. weighted average [8])
or kernel function (e.g. exponential kernel [9]) to impute a
value based on these instances. The case where k = 1 is
called hot deck. Usually, £-NN based methods are more
accurate than MEI but require enough complete instances
to identify the neighbors [10], and one must determine the
appropriate number of neighbors to use. Most critically,
these methods cannot impute if all variables at an instance
are missing. This is a major limitation when measurements
come from one device or when they are always either all
present or absent.

Model based methods [11] learn a model from non-
missing attributes. The learning task is then classification for
nominal attributes and regression for continuous attributes,
and the model is used to impute values. These methods
are time intensive for the learning process and the model
structure is problem specific.

Statistical methods exist based on maximum likelihood,
and expectation maximization [12]. Expectation Maximiza-



Testing vectors

—>| l+l71 | l+123

|r+12N['[-|_

missing data

1 2 3 N 12 3 1 2 3
1 112 113 b 1 Ti3
I 2|r  |roy
; 3 {lafl e
t :! ) N [Pvefrne|rs| oo
: Nyl gl -] TR
T Int ) Ino | Ins| == 9 Y k nearest
Sample Time-lag matrices\ Correlation matrices values

1

N 2

1

L t-1

t+1

Imputed

value

Training vectors

Figure 3: An example of L&-NN for a single missing value (indicated by the black cell), where N is the number of variables,
T is the number of time-instances, L; is the ' time lag matrix, [,y is the time lag from x to y variable, p is the number
of lag and correlation matrices, and k is the number of nearest neighbors.

tion (EM) methods iteratively impute missing values and
update distribution parameters. These methods give higher
classification accuracy compared with model based impu-
tations [13]. However, EM algorithms are computationally
expensive and problem specific for the iterative E-M steps.

In clustering based SI methods [14], [15], data are first
clustered using the non-missing values and then missing
values are imputed using the instances of the cluster that
contain the missing value instance. A hybrid clustering and
model based method was proposed by Nishanth et al. [16]
where they combine k-means with artificial neural network
(ANN) and found that the method is more accurate than
individual model based techniques (e.g. ANN) on financial
data. However, the performance decreases when there are
fewer complete instances and a higher missing rate.

C. Multiple Imputation (MI)

Multiple imputation contains two phases, i) imputation,
where multiple estimates of a missing value are generated,
and ii) combination, where inferences from each of the
imputed datasets are combined [17].

Methods used in the imputation phase can be divided
into two categories: i) multi-variate normal (MVN) model
that assumes that the variables are continuous and normally
distributed and ii) ICE or MICE (Multivariate Imputation
by Chained Equations) which uses a chained equation to fill
the missing values [18], [19]. MICE has several advantages
over MVN such as mixed variable type (e.g. continuous,
categorical), and skewed continuous variables, shown exper-
imentally by Bouhlila et al. [20]. MICE can impute when

variables have different types of missingness, but not when
multiple types of missingness occur within a single variable.

The combination of results can be done by averaging [21],
[22], Bagging [22], and boosting [23]. Schomaker et al. [22]
experimented on simulated data and showed that model
averaging can give stable estimation of different parameters
like standard errors, and confidence interval.

The existing methods make two primary assumptions
that may not hold, and are particularly problematic with
biomedical data. First, in MAR, variables are assumed to
be correlated with no time lag. Second, each variable is
assumed to have only one type of missingness, whereas
we often need to impute missing data whose value depends
on both the missing variable and other variables (i.e. miss-
ingness is both MAR and NMAR). Moreover, likelihood
based methods (e.g. k-NN) are not able to impute at all
if all the values along an instance are missing. A brief
comparison of our approach and others is shown in Table I,
where methods are compared in terms of: ability to impute
completely missing time instances, inclusion of time lags
for correlations, and ability to handle variables that are both
MAR and NMAR.

III. METHOD

We now introduce a new method for imputing missing
values in time series data with lagged correlations and mul-
tiple types of missingness within a variable. Our proposed
method is a combination of two imputation methods: i) an
extension of k-NN imputation with lagged correlations and



ii) the Fourier transform. The system block diagram is shown
in figure 2.

First, we develop an extension to k-NN with time lagged
correlations using cross-correlation. Since correlations may
persist for a period of time and time measurements may
be uncertain, we introduce lagged k-NN (Lk-NN), which
has two parameters: k, the number of nearest neighbors,
and p the number of time lags. Thus we take the p lags
with the strongest correlation for each pair of variables and
then later the k nearest neighbors across all lags (weighted
by the strength of the correlation), averaging the results.
This enables better handling of MAR data by improving
the handling of time-dependent correlations. However, this
does not take into account correlations within a variable and
cannot be used when all data at the lagged timepoints are
missing, so we also develop an imputation approach based
on the Fourier transform, which uses only the data for each
variable to impute its values.

Results from the two methods are then averaged for each
value. Combining Lk-NN with the Fourier-based method
overcomes the limitation of nearest neighbors methods re-
quiring some data present at each instance and improves
accuracy by handling both MAR and NMAR missing data.

A. Lk-NN Method

Normally, £-NN finds similar instances by, say comparing
the values of variables at time 1 to those at time 10. However,
correlations may occur across time. For example, insulin
does not affect blood glucose immediately and weight and
exercise are correlated at multiple timescales. This was
shown in figure 1, where there is a lag between a change in
one variable’s value and the response in another. To handle
this, we develop a new approach for constructing the test and
training vectors using lagged correlations, where the time
lags can differ between pairs of variables. This is illustrated
in figure 3.

1) Calculating Time Lags: To form the test and train-
ing vectors, we first identify the correlation between the
variables and their timing using cross-correlation. Cross-
correlation is a similarity measure of two time-series as a
function of a time delay applied to one of them [24]. The
cross-correlation, r,,, between two variables, x and y, for
time delay d is:

ay(d)
Py (d) = ——s 3)
! Cxyp (O)ny(())
ﬁ ZtT;ld (v¢ —Z)(Yp4a —9y), fd>0

Cay(d) =
ra Sy (@ — &) (Yrra — §), otherwise
“
where T is the length of the series,  and y are the mean of
x and y respectively, d varies from —(D — 1) to (D — 1),
and D is the maximum time delay. Since values for = and
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Figure 4: An example of Fourier based imputation for one
variable, (a) with simulated missing data points, (b) the
actual data (in blue) with the imputed data (in red).

y may be missing at different timepoints, we use only the
instances where both are present in this calculation.

Matrices are constructed for each of the p lags, with
the correlations ordered from 1...p by decreasing strength.
Thus, for each pair of variables L; contains the lag, d, with
the strongest correlation (max |rg,|) and L, the lag with
the weakest. Each L is an N x N matrix, where elements
represent the time lags for each correlation between the [NV
variables. An element [, can be positive (values of variable
y have a delayed response in time unit [;, to values of x)
or negative (values of variable x have a delayed response
of time unit [, for values of y) and I, = —l,,. The
diagonal elements of the matrix are not computed since
those elements give the auto-correlation of the signal and
are not used in this algorithm. For all I, the corresponding
correlation values, |1, |, are stored in the matrices R; ... Rp,
which are used in the neighbor selection step.

2) Forming Vectors: Formation of vectors with Lk-NN
is more complex than for k-NN since we must account for
multiple lags that differ across variable pairs. Instead we
create a set of test and training vectors for each of the p
lags. Below we describe how to create the vectors for a
single lag.

Say a variable, z, is missing at time ¢ and x has a time
lagged relationship with variables y and z, with lags [,
and [, respectively. The test vector is then formed using
the values of y and z at ¢+, and ¢ +1[,. Training vectors
are formed in similar way and the values of x, which are
the candidate values for imputation, are stored separately.
Training vectors are generated from the existing values of z
and the time instances resulting after adding the lags must
be within 1 to 7" (length of data). This makes the boundary
of time instances of training vectors for a missing value:

[max(1,1—min(l,; ...lxn)), min(T, T —max(ly1 ... lxN))]

4)
where [,1, ..., [N are the time lags of correlations between
x and all N variables for the current lag matrix.



Algorithm 1 Fourier transform based imputation

Input:
Data matrix, Y = {V1, V2, ..., VN }, is a set of variables, where each
V; = {v1,v2,...,v7}, and v; is the j¢ data point;
Output:
Data matrix, Y with imputed values
1: for each V in Y do
2 ts = min(j), where v; is missing, 1 < j < T;
3 while ¢5 # () do
4: te = min(j), where v; is non-missing, ts < j < T
5: F=DFT(U1,U2,...,’U(tS,1));
6: u = IDFT(F, tc);
7 vj = uj, where ts < j < te;
8: ts = min(j), where v; is missing and 1 < j < T’
9: end while
10: end for
11: return Y

3) Finding Neighbors and Imputing Missing Values:
Once the lags are found and vectors formed, the next step
is finding the nearest neighbors for each missing instance.
Since the strength of the correlation between variables and
across the p lags may differ substantially, we incorporate a
weight into our distance measure. Note that each neighbor
may be based on different variables (if some are missing),
so this accounts for the correlation of the variables actu-
ally present. This ensures that neighbors based on highly
correlated variables are given more weight than those with
weakly correlated ones.

Most current methods use the Euclidean distance as a
proximity measure, but this does not incorporate the differ-
ing correlations. Instead we propose a weighted modification
of the Euclidean distance that is similar to the Mahalanobis
distance but can handle missing values in both test and
training vectors. First,

N
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where N is the number of variables and we are calculating
the distance between x and y. This is the average Euclidean
distance between two vectors computed for non-missing
pairs of values, where we also keep track of non-missing
pairs of variables. The result is p sets of k£ nearest neighbors
(one set of neighbors for each L matrix).

d(z,y) = (6)

Next, the distances are weighted by the average cor-
relations of the non-missing variables. With the distance
between an instance with missing values and one of its
neighbors being d, the weighted distance, d,,, is:

dy = d X (2 —meanyecy (o)) ™

where v is the variable whose missing value is being
imputed and U is the set of variables that were present
during computation of d. Suppose for a missing value of a
variable, v, there is a neighbor where the distance between
vectors are computed by non-missing pairs of variables,

Table II: Variables in DSIM dataset

Name
G Glucose concentration
Gp Glucose mass in plasma
Gy Glucose mass in tissue
1 Insulin concentration
1, Insulin mass in plasma
I Insulin mass in tissue
U, Glucose Utilization
X Insulin in the interstitial fluid
EGP Endogenous glucose production
R, Glucose rate of appearence
Qstol Solid glucose in stomach
Qsto2 Liquid glucose in stomach
Qgut glucose mass in the intestine
R; Rate of appearence of insulin in plasma
Tsc1 Nonmonomeric insulin in subcutaneous space
Isca Monomeric insulin in subcutaneous space

z,y and z. Then the distance is multiplied by the weight
(2 — mean(ryg, Tvy, Tvz)). We then average the values for
the k neighbors with the lowest weighted distance (out of
the set of p x k neighbors).

B. Fourier Method

While Lk-NN takes into account correlations between
variables, we also need a way of accounting for patterns
within a variable, in order to handle data that are NMAR.
To do this, we develop an imputation method based on the
Fourier transform that uses past values of each variable to
impute each missing value.

First, a data segment is formed with the data points
from the beginning of the signal up to the last non-missing
data point. Where values vy through v,_; are present (or
imputed), and v, ... v, are missing, the Fourier descriptors
are obtained with:

_ -1 — 25 (1) (k—1)
F, = j=1Yj X e p-1

(®)

where, F) is the k'™ Fourier descriptor with 1 < k <
(p—1), and i = /—1.

Then, the imputed value for time m, where p < m < gq,
can be calculated from the Fourier descriptors with:

_ 20T (4 _
Vm = 547 S0y Fy xer 1D ()

where, the notation is same as equation (8). Algorithm 1
shows the process, where DFT(v) generates Fourier descrip-
tors for a variable, v, and IDFT(F, t) regenerates a signal of
length ¢ from the Fourier descriptors, F'. An example of the
result on a set of simulated data is shown in figure 4 where
most of the imputed data points are near the actual value.

C. Combining the methods for FLk-NN

For each missing data point, we impute two values using
the described methods and then combine these. Since model
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averaging gives a more stable and unbiased result com-
pared with other approaches such as bagging and weighted
mean [22], we average the value estimated by the two
methods, and call the resulting combined approach FLE-NN.

D. Time complexity

The computational complexity of L&-NN is a combination
of two processes: cross-correlation and k-NN. For two time
series of the same length, 7', and maximum delay, D, the
complexity is O(DT') for cross-correlation, which results
in O((gf )DT) for N variables. The complexity of k-NN
for 2 missing values is O(zT'N). Therefore, the total time
complexity of Lk-NN is O((}) DT + 2T'N). Note that the
efficiency of this method can be improved by a look-up table
of distance between instances. In our Fourier method, we
used the fast Fourier transform (FFT) algorithm, which has
the complexity O(T log T'). Thus the complexity of imputing
x missing values with the Fourier method is O(zT logT)).
Hence, the complexity of FLE-NN is O((})DT + 2T N +
2T logT).

Table III: Baseline level of missing data in NICU dataset

Patient | # of variables | original missing
Pl 11 0.1%
P2 14 9.37%
P3 16 3.28%
P4 14 8.16%
P5 16 4.62%
P6 18 8.68%
P7 13 9.96%
P8 16 6.57%
P9 18 4.54%

IV. EXPERIMENTAL RESULTS
A. Data

We compared the proposed approach to others on two
biomedical datasets that have time lagged correlations be-
tween the variables.!

Simulated diabetes (DSIM) dataset: We used the
glucose-insulin simulation model developed by Dalla-Man
et al. [25] to construct a simulated dataset, DSIM. The
model describes the physiological events occurring after a
meal and was created by fitting the major metabolic fluxes
estimated (endogenous glucose production, meal rate of
appearance, glucose utilization, and insulin secretion) in a
model-independent way on a wide population [25]. This
model has been validated with human subjects [25] and
approved by the FDA for use in pre-clinical trials [26],
and is thus more realistic than examples such as random
networks. The model contains a set of submodules that affect
one another with varying delays. We generated one day of
data for each of 10 patients by randomly selecting patient
parameters (e.g. body weight, meal amount and timing, and
insulin dose) within realistic ranges (e.g. body weight within
50kg-120kg). Data was recorded at every minute, yielding
1440 time points for the 16 variables listed in Table II. We
added Gaussian noise to make the data more similar to real-
world cases. The relationships embedded in the model are
shown in figure 5.

Real-world NICU dataset: In the second experiment we
used physiologic data collected from a set of subarachnoid
hemorrhage (SAH) patients admitted to the Neurological in-
tensive care unit (NICU) at Columbia University [27]. Data
on cardiac and respiratory variables, and brain perfusion,
oxygenation, and metabolism were continuously collected
from 48 patients. However, the set of variables collected
(a max of 22) differed for each patient as did the number
of timepoints, as it covered the duration of ICU stay. Data
duration ranged from 2.5 to 24.7 days, with a mean of 12.33
days. The majority of data were recorded at 5 second inter-
vals, which were then minute-averaged so that all recordings

IThe DSIM data, code, and instructions for replicating results are avail-
able at https://github.com/kleinberg-lab/FLK-NN. The NICU data cannot
be shared due to HIPAA privacy regulations.
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Table IV: Mean (m) and standard deviation (s) of MAE for DSIM dataset.

(a) Missing ratios 5% - 25%.

5% 10% 15% 20% 25%

Method m [ s m [ s m [ s m s m s
BPCA 0.046 | 0.059 | 0.047 | 0.060 | 0.049 | 0.062 | 0.051 | 0.064 | 0.052 | 0.066
EM 0.057 | 0.064 | 0.054 | 0.063 | 0.053 | 0.064 | 0.053 | 0.065 | 0.053 | 0.067
Hot deck | 0.053 | 0.076 | 0.055 | 0.080 | 0.057 | 0.086 | 0.059 | 0.090 | 0.063 | 0.096
Inpaint 73.4 342.3 79.8 372.5 82.0 382.1 81.7 389.1 88.4 417.7
k-NN 0.044 | 0.061 | 0.046 | 0.065 | 0.047 | 0.069 | 0.049 | 0.071 | 0.051 | 0.076
MEI 0.179 | 0.143 | 0.178 | 0.142 | 0.178 | 0.143 | 0.178 | 0.143 | 0.178 | 0.142
MICE 0.063 | 0.091 | 0.065 | 0.092 | 0.065 | 0.092 | 0.065 | 0.091 | 0.068 | 0.095
Fourier 0.048 | 0.073 | 0.049 | 0.080 | 0.050 | 0.083 | 0.049 | 0.079 | 0.051 | 0.082
Lk-NN 0.041 | 0.057 | 0.043 | 0.060 | 0.044 | 0.062 | 0.045 | 0.063 | 0.047 | 0.066
FLE-NN | 0.041 | 0.060 | 0.042 | 0.066 | 0.043 | 0.070 | 0.043 | 0.066 | 0.044 | 0.068

(b) Missing ratios 30% - 50%.
30% 35% 40% 45% 50%

Method m | s m | s m [ s m S m s
BPCA 0.053 | 0.066 | 0.055 | 0.070 | 0.057 | 0.070 | 0.059 | 0.073 | 0.061 | 0.075
EM 0.053 | 0.067 | 0.055 | 0.070 | 0.056 | 0.071 | 0.058 | 0.073 | 0.060 | 0.075
Hot deck | 0.069 | 0.106 | 0.081 | 0.122 | 0.095 | 0.138 | 0.108 | 0.151 | 0.116 0.15
Inpaint 89.9 4238 98.8 474.4 | 100.9 | 476.7 | 105.3 | 499.9 | 109.1 | 523.4
k-NN 0.056 | 0.082 | 0.064 | 0.092 | 0.076 | 0.104 | 0.088 | 0.116 | 0.098 | 0.125
MEI 0.178 | 0.143 | 0.178 | 0.141 | 0.178 | 0.141 | 0.178 | 0.142 | 0.178 | 0.142
MICE 0.069 | 0.097 | 0.072 | 0.101 | 0.074 | 0.103 | 0.076 | 0.106 | 0.081 | 0.111
Fourier 0.051 | 0.083 | 0.053 | 0.087 | 0.053 | 0.089 | 0.056 | 0.095 | 0.058 | 0.099
Lk-NN 0.048 | 0.066 | 0.048 | 0.067 | 0.049 | 0.069 | 0.052 | 0.071 | 0.057 | 0.083
FLkK-NN | 0.045 | 0.069 | 0.046 | 0.071 | 0.047 | 0.076 | 0.049 | 0.083 | 0.051 | 0.083

were synchronized to the same time points. This resulted in
an average of 17,771 time points for each patient, with a
standard deviation of 10,216. As the amount of missing data
differed widely due to factors such as interventions, device
malfunctions and loss of connectivity between the device
and network, we selected a subset of 9 patients with fewer
missing values and used 3 days of data. It was necessary to
ensure a sufficient amount of data present at the start, as we
later removed varying amounts of data to test the methods
and compare imputed to actual values. Table III gives the
baseline amount of missing data for each subject. For the
simulated missing data, the missing ratios indicate the total
fraction of missing values (original + simulated).

B. Procedure

We created synthetic missing data by deleting randomly
selected values. If the selected data point was already miss-
ing (which can occur in the NICU dataset), we select another
and repeat this until the target missing ratio is reached. The
ratios are 5% to 50% and 10% to 50% in increments of 5%
for DSIM and NICU respectively. The maximum length of
consecutively missing values (gaps) for both the datasets are
shown in figure 6. The maximum gap length is 17 for DSIM
and 1,485 for NICU.

We compared our system with several commonly used
state-of-the-art methods from different categories.

METI [7]: Missing values are imputed by computing the
mean of non-missing values of a variable.

Hot deck and k-NN [8]: Euclidean distance is used to find
the k£ neighbors and the weighted average of these is used
to impute. For k-NN, we used k& = 5, which gives the best
result for this algorithm and for Hot Deck k is always 1.

BPCA [12]. This probabilistic method applies Bayesian
principle component analysis prior to the conventional E-
M process. We used the authors’ BPCAfill.m code? with
two parameters set to their default values, & = number of
variable -1 and maxepoch = 200.

EM [28]: This iterated linear regression analysis replaces
the conditional maximum likelihood estimation of regression
parameters in the traditional E-M algorithm with a regu-
larized estimation method. We used the RegEM package’
with the default values for the parameters (e.g. maximum
number of iteration: 30, regression method used: multiple
ridge regression).

Inpaint [29]: This statistical model based approach extrap-
olates non-missing elements using an iterative process. We
used the authors’ code* with the default value for number
of iterations, which is 100.

Zhttp://ishiilab.jp/member/oba/tools/BPCAFill.html

3http://www.clidyn.ethz.ch/imputation/

“http://www.mathworks.com/matlabcentral/fileexchange/
27994-inpaint-over-missing-data-in-n-d-arrays
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http://www.mathworks.com/matlabcentral/fileexchange/27994-inpaint-over-missing-data-in-n-d-arrays

Table V: Mean and standard deviation of MAE for NICU dataset.

(a) Missing ratios 10% - 30%

10% 15% 20% 25% 30%
Method m S m [ s m | s m [ s m s
BPCA 0.082 | 0.214 | 0.124 | 1.087 | 0.146 | 0.541 | 0.177 | 0.675 | 0.197 | 0.986
EM 0.046 | 0.064 | 0.049 | 0.068 | 0.049 | 0.069 | 0.051 | 0.070 | 0.053 | 0.073
Hot-deck | 0.026 | 0.056 | 0.031 | 0.066 | 0.039 | 0.078 | 0.049 | 0.090 | 0.064 | 0.102
Inpaint 1.410 | 2.328 | 1.491 | 2.604 | 1.569 | 2.880 | 1.642 | 3.075 | 1.731 | 3.352
k-NN 0.024 | 0.042 | 0.027 | 0.049 | 0.031 | 0.054 | 0.036 | 0.060 | 0.045 | 0.067
MEI 0.089 | 0.094 | 0.092 | 0.095 | 0.091 | 0.095 | 0.091 | 0.095 | 0.091 | 0.095
MICE 0.057 | 0.089 | 0.062 | 0.095 | 0.064 | 0.097 | 0.066 | 0.098 | 0.069 | 0.101
Fourier 0.025 | 0.102 | 0.025 | 0.072 | 0.027 | 0.134 | 0.028 | 0.124 | 0.030 | 0.134
Lk&-NN 0.019 | 0.035 | 0.022 | 0.041 | 0.024 | 0.044 | 0.027 | 0.046 | 0.029 | 0.050
FLE-NN | 0.020 | 0.080 | 0.021 | 0.050 | 0.022 | 0.084 | 0.024 | 0.086 | 0.026 | 0.101
(b) Missing ratios 35% - 50%
35% 40% 45% 50%
Method m [ s m [ s m [ s m s
BPCA 0.203 | 0903 | 0.190 | 0.863 | 0.190 | 1.197 | 0.199 | 1.467
EM 0.055 | 0.074 | 0.057 | 0.075 | 0.060 | 0.076 | 0.062 | 0.078
Hot-Deck | 0.078 | 0.115 | 0.091 | 0.122 | 0.101 | 0.127 | 0.110 | 0.132
Inpaint 1.798 | 3.535 | 1.852 | 3.671 | 1.950 | 3.968 | 2.017 | 4.120
k-NN 0.055 | 0.075 | 0.066 | 0.084 | 0.076 | 0.091 | 0.084 | 0.098
MEI 0.091 | 0.096 | 0.091 | 0.095 | 0.091 | 0.095 | 0.091 | 0.095
MICE 0.073 | 0.103 | 0.076 | 0.105 | 0.080 | 0.107 | 0.084 | 0.109
Fourier 0.030 | 0.119 | 0.032 | 0.133 | 0.035 | 0.161 | 0.040 | 0.196
LE&-NN 0.032 | 0.052 | 0.035 | 0.055 | 0.039 | 0.059 | 0.044 | 0.065
FLE-NN | 0.027 | 0.077 | 0.030 | 0.089 | 0.033 | 0.110 | 0.038 | 0.146
MICE [18]: As a multiple imputation method we used C. Results

MICE, which employs chained equation to impute. We used
the mice R package’ with all parameters set to their defaults.

FLE-NN: We used & = 5 since it gives the highest
accuracy, D = 60 (i.e. 1 hour) as most of the biological
effects will occur within one hour, and p = 3 to enable
multiple lags without drastically increasing computational
complexity.

We used the authors’ code for each algorithm when avail-
able and implemented MEI, hot deck, and k-NN ourselves.

We evaluate the performance of each approach based on
how close the imputed values are to the actual values, using
the mean absolute error (MAE):

1 S ac im
MAE = Ez |dge — dim|

i=1

(10)

where 7 is the number of missing data points, and df¢ and
d;""? are the i'" normalized actual and normalized imputed
values respectively. For normalization, we used min-max
normalization for each variable, ignoring the missing values
from the actual data. MAE is computed for each subject
individually (10 for DSIM, 9 for NICU), and then the
average and standard deviation are calculated.

Shttp://cran.r-project.org/web/packages/mice/index. html

DSIM: Table IV shows the mean and standard deviation
of the MAE for each method, with the lowest error rates
highlighted. For all missing ratios our combined method,
FLE-NN, gives the lowest average MAE with a small
standard deviation. Further, L&£-NN has lowest MAE for
the 5% missing ratio and is ranked second for all other
ratios. Figure 7 shows the number of times each method
gives the highest imputation accuracy out of the 100 total
datasets, with FLE-NN yielding the highest accuracy in 89
cases and Lk-NN the highest in the other 11 cases. Thus,
including lagged correlations in k-NN allows more accurate
imputation of missing values when data have temporal
correlations and there are potentially significant amounts of
missing data. Other methods did not consider time lagged
correlation at all and thus their imputation accuracy is lower
than the proposed method.

Among the existing methods, £-NN and BPCA had better
results for lower missing ratios but their accuracy decreases
significantly as the missing ratio increases. On the other
hand, EM was less accurate for lower missing ratios but
the accuracy did not decrease as significantly as the missing
ratio increased and in fact it gave better accuracy than k-NN
and BPCA for higher missing ratios.

Note that the accuracy of the combined approach, FLk-
NN, is higher than the individual approaches, Fourier and


http://cran.r-project.org/web/packages/mice/index.html

LE-NN, for every missing ratio since the combined approach
includes relationships within and across variables, and the
DSIM data has auto-correlations with lagged correlations, as
shown in figure 5. For example, in figure 5, liquid glucose
in the stomach (Qst02) depends on Q41 and itself.

Figure 6 shows the maximum number of consecutive
occurrences of missing values (i.e. gap of values within
observed values) where DSIM has a maximum gap length
of 17. Large gaps have an impact on Fourier but less
influence on Lk-NN, which uses lagged correlations with
other variables and leads to better results when the methods
are combined.

Our Lk-NN can impute if some of the variables are
missing in test vector cannot if all the lagged values are
missing (e.g. a subject wearing sensors went out of network
coverage for a longer period of time) whereas the Fourier
method can impute in this situation. On the other hand,
Fourier cannot impute missing values that occur before the
first observed value (e.g. due to starting delay of a device)
while L&-NN can handle this. Across the DSIM datasets an
average of 1.27% of missing values could not be imputed
by Lk-NN, while FLk-NN imputed all missing values.

A two tailed un-paired t-test (for unequal variance) found
that for all missing ratios, the MAE of FLk-NN is signif-
icantly different from that of other methods (p < 0.0009)
besides Lk-NN. FLk-NN and Lk-NN are significantly dif-
ferent for 20% to 50% (p < 0.000004) and 15% (p < 0.041)
missing ratios, but not for 5% and 10% using the threshold
p < 0.05.

NICU: For this dataset, we compute MAE for the sim-
ulated missing data points only. Table V shows the mean
and standard deviation of MAEs of NICU. The best mean
values for each missing ratio are highlighted in bold. Our
proposed methods out-performed all other methods, where
Lk-NN has lowest mean MAE for the 10% missing ratio
and FLk-NN was best for all other missing ratios. Figure 7
shows the number of times each method gives the highest
imputation accuracy for this dataset. FL&-NN has highest
proportion (39 out of 81), with Lk-NN being second (21 of
81), and Fourier third (11 of 81).

Compared with the DSIM dataset, the accuracy of many
other methods such as BPCA deteriorated significantly due
to the increased amount of non randomly-generated missing
values whereas our method’s accuracy improved. k-NN and
EM had the best accuracy of the existing methods but their
accuracy drops significantly as the amount of missing data
increases, while FLk-NN showed a more gradual decrease
in accuracy as the ratio increased.

For the NICU dataset, Lk-NN could not impute an average
of 1.71% of missing values, and for k-NN the amount is
1.99%, while FLE-NN imputed all missing values. The p-
value of the difference between our approach and the others
using an unpaired t-test was significant for all methods from
15% to 50% missing ratios (p < 0.0005). For the 10%
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Figure 7: Dataset missing-ratio pair comparison.

missing ratio, all other methods are significantly different
(p < 0.0007) except LE-NN.

D. Imputation with missing rows

One of the key benefits of our proposed approach is that
the combined method enables imputation when an entire row
is missing, meaning that all variables at a particular time
are missing. This is a realistic challenge with biomedical
data where measurements may come from a single device
or there’s a loss in connectivity preventing recording.

To evaluate this, we created another simulated missing
dataset using the DSIM data. Here for each subject, 10%
of rows were deleted. All imputation methods were applied
and evaluated using the same approach as described earlier.
Note that BPCA, hot deck, and k-NN cannot impute at all
in this case. For Lk-NN, though the time instances are fully
missing for a missing value, the test vector may not be empty
because of the use of time lags, where the lagged values may
be present. However, this did not occur and Lk-NN was able
to impute all missing values.

The MAE for the remaining methods across the 10
datasets is shown in Table VI, which shows that our pro-
posed method, FLk-NN, has the highest accuracy and lowest
standard deviation. Lk-NN and Fourier were second and
third respectively. A t-test shows that the MAE of FLk-
NN is significantly different from that of other methods
(p < 0.0051) other than LA-NN. Note that the accuracy
of EM and MEI is the same here since EM first initializes
missing values using MEI and then optimizes those values,
but in this situation it did not optimize.

V. CONCLUSION

Missing values are common in big data, where often
many variables have correlations across time. Further, these
data are rarely missing completely at random, especially
when multiple signals are collected from a single device
that may face errors or malfunction. At the same time,
current guidelines for biomedical research recommend using
complete datasets and imputing missing values, making



Table VI: Mean and Standard deviation of MAE for simu-
lated data (DSIM) where 10% of rows are missing, meaning
all variables are absent for the missing instances. Methods
that cannot handle such cases are indicated with a dash.

Method Mean | Standard Deviation
BPCA - -
EM 0.182 0.146
Hot deck - -
Inpaint 28.39 136.52
k-NN - -
MEI 0.182 0.146
MICE 0.206 0.190
Fourier 0.049 0.072
Lk-NN 0.045 0.061
FLEK-NN | 0.043 0.060

accurate imputation in these data a priority [30]. Here we
propose a novel imputation method that incorporates varying
time lags between correlated variables and auto-correlations
within the variables. The main contributions of this paper are
two-fold: i) it incorporates time lagged correlations between
the variables during imputation and ii) it can handle multiple
types of missingness occurring in a single variable, whereas
existing methods cannot handle these cases. Moreover, the
proposed system is able to impute with high accuracy in the
case of empty instances while some of the state-of-the-art
methods cannot impute values at all. The system obtained
the best accuracy in terms of MAE for both simulated and
real world biological datasets and outperformed other bench-
mark methods. Experimental results show that the system
can impute plausible data even if 50% of a dataset is missing
with many consecutively missing values and in the presence
of fully empty instances in the data.
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